
LLNL-JRNL-403007

The Early Optical Brightening in
the GRB 071010B

J. H. Wang, M. E. Schwamb, K. Y. Huang, C. Y. Wen, Z. W.
Zhang, S. Y. Wang, W. P. Chen, F. B. Bianco, R. Dave, M. J.
Lehner, S. L. Marshall, R. Porrata, C. Alcock, Y. I. Byun, K. H.
Cook, S. K. King, T. Lee, Y. Urata

April 16, 2008

Astrophysical Journal Letters



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



The Early Optical Brightening in the GRB071010B

J. H. Wang1, M. E. Schwamb2, K. Y. Huang1, C. Y. Wen1, Z. W. Zhang3, S. Y. Wang1, W.

P. Chen3, F. B. Bianco4, R. Dave5, M. J. Lehner1,4, S. L. Marshall6,7, R. Porrata8, C.

Alcock5, Y. I. Byun9, K. H. Cook7, S. K. King1, T. Lee1, and Y. Urata1,10

ABSTRACT

We report the detection of early (60–230 s) optical emission of the gamma-ray

burst afterglow of GRB071010B. No significant correlation with the prompt γ-ray

emission was found. Our high time-resolution data combining with other mea-

surements within 2 days after the burst indicate that GRB071010B is composed

of a weak early brightening (α ∼ 0.6), probably caused by the peak frequency

passing through the optical wavelengths, followed by a decay (α ∼ −0.51), at-

tributed to continuous energy injection by patchy jets.

Subject headings: gamma-ray: burst : afterglow

1. Introduction

With the launch of the Swift γ-ray explorer (Gehrels et al. 2004) in late 2004, great

progress has been made in the study of early optical afterglow of gamma-ray bursts (GRBs).
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Two broad classes have been proposed (Vestrand et al. 2006) for the optical emission detected

during the first few minutes after a GRB: (1) prompt optical emission correlated in time with

the prompt γ-ray emission (e.g., GRB041219 and GRB050820a; Vestrand et al. 2005, 2006);

(2) early optical afterglow after the γ-ray emission (e.g., GRB990123 and GRB050401;

Akerlof et al. 1999; Rykoff et al. 2005).

The standard relativistic blast wave (”fireball”) model (e.g. Sari & Piran 1997a; Meśzaŕos

2002) attributes the prompt γ-ray emission to the internal shocks in the ultrarelativistic jet

generated by the central engine (Narayan, Paczynśki & Piran 1992; Rees & Meśzaŕos 1994;

Sari & Piran 1997b). The prompt optical emission is known to vary simultaneously with

the prompt γ-ray emission, indicative of their common origin. The early optical afterglow,

on the other hand, is considered to arise from interaction between the internal shocks and

the surrounding medium (so-called “external shocks”; Meśzaŕos & Rees 1992, 1993; Katz

1994; Sari & Piran 1995). The early optical afterglow may start during the prompt γ-ray

emission, and persist for ten minutes or longer after the prompt γ-ray emission has faded.

So far, only GRB050820a has been observed to show a temporal correlation between the

two different optical components. Such a correlation suggests that the early afterglow is

associated with the impulsive energy released by the prompt emission, which is consistent

with what is expected in the fireball model for an external forward shock. Fast photometry

in the early phase of emission is therefore important to reveal the two optical components

and to study the interaction of the GRB ejecta with the surrounding medium.

In this letter, we report on our high time-resolution detection of the optical emission

of GRB071010B in the first few minutes with the TAOS (Taiwanese-American Occultation

Survey) telescopes (Alcock et al. 2003; Chen et al. 2007).

2. THE TAOS GRB alert system

The TAOS system consists of an array of four robotic telescopes, TAOS-A, TAOS-B,

TAOS-C and TAOS-D, with separations ranging from 6 to 65 meters. Each telescope has a 50

cm aperture imaging to a corrected Cassegrain focus at f/1.9 with a 5000-7200 Å passband.

The detector is a Spectral Instruments Series 800 CCD camera with a 2048×2052 E2V CCD

42-40 chip with two readout channels. The optical system gives a 3 square-deg field of view.

More details about the TAOS telescope system are described by Lehner et al. (2008). The

main scientific goal of the TAOS project is to detect and characterize the small (a few km

across) objects beyond Neptune, but the robotic system is well suited to respond efficiently

to GRBs.
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Upon arrival of a GCN alert, the TAOS scheduler daemon makes the decision whether

to interrupt the regular observing session to follow up on the GRB, based on the observ-

ability (e.g., elevation angle) of the target, duplicate packets, alert retracted by the GCN,

etc. Currently the TAOS system responds to, weather permitting, any GRB above 25 deg

elevation, within two hours of the burst.

The advantage of the TAOS system for the GRB studies is its capability to respond

rapidly to an alert with fast photometry. This allows us to study early optical behavior of

a GRB. Currently our system can point to the burst coordinates provided by Swift in less

than 30 s, and start observing. A GRB alert is followed up for 30 min, with each TAOS

telescope taking a different exposure time, i.e., with different cadences between telescopes,

from a fraction of a second to tens of seconds. Targets brighter than R ∼ 18 mag can be

readily detected. This setup of multiple telescopes taking different exposure times maximizes

the chance to detect various types of GRB optical counterparts and enables cross checking

of photometric reliability.

3. Observations and data analysis

On 2007 October 10, the Swift Burst Alert Telescope (BAT) detected GRB071010B at

20:45:47 UT. This burst showed a main FRED (fast rise-exponential decay) pulse lasting

∼ 20 s, with a precursor some 45 s before the main pulse, an extended tail emission, and a

third, weak peak around 95 s after the burst (Markwardt et al. 2007). The T90 duration of

this event is 35.74±0.5 s in the 15–350 keV range (Markwardt et al. 2007). Suzaku/WAM

also detected the main spike (Kira et al. 2007; Urata et al. 2008).

A bright X-ray afterglow was detected by the Swift X-Ray Telescope (XRT) 6800 s

after the burst (Kennea et al. 2007). In addition, a bright optical afterglow was detected by

several ground based telescopes (Oksanen 2007; Kann et al. 2007a; Im et al. 2007a; Kocevski

et al. 2007; Xin 2007; Klunko et al. 2007; Rumyantsev 2007). The spectral measurements of

the afterglow by Gemini North telescope (Cenko et al. 2007) and Keck telescope (Stern et

al. 2007) indicate a redshift of z = 0.947 for this event. A jet break was also detected with

late time observations (Kann et al. 2007c; Im et al. 2007a; Urata et al. 2008)

The TAOS telescopes began to observe GRB071010B about 38 s after the GCN alert—

or 52 s after the burst. A sequence of 1-s, 5-s, and 25-s exposures were taken, respectively,

by TAOS-A, TAOS-B, and TAOS-D. The sky conditions were favorable but observations

were terminated after 3 min because of the twilight shutdown set by the scheduler. Such a

constraint has since been lifted to allow completion (30 min) of a GRB follow-up, with the
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fourth TAOS telescope now designated to take 0.25 s data.

The images were processed by a standard routine including bias subtraction and flat-

fielding using IRAF. Detection was clearly seen in the individual images of TAOS-B and

TAOS-D, but not in TAOS-A. The images of TAOS-A were co-added to increase the signal-

to-noise ratio in the analysis.

The DAOPHOT package (Stetson 1987) was then used to perform point-spread function

(PSF) photometry. In each image, six stars around the GRB position were used to create

the PSF model. For photometric calibration, we used 9 reference stars (0.29 < V − R <

0.61) in the GRB field given by Henden (2007). Our photometric results, including those of

individual images by TAOS-B (Figure 1) and TAOS-D, and of stacked images by TAOS-A,

are listed in Table 1. Both the photometric and systematic calibration errors were included

in the magnitude error. A similar result was obtained with differential photometry by the

SExtractor software package 2.3 (Bertin & Arnouts 1996) using a nearby reference star

(USNOB1 1355.0217787, RA= 10h02m23s.577, Decl= +45◦34′54.38′′,R2=15.12 mag). The

detection threshold was that an object must have at least 3–10 connected pixels and a flux

in excess of 1.5 times the local background noise. The MAGAPER estimator in SExtractor

was used to determine the magnitude of the source. In practice, the TAOS system equips

with a fixed filter. Full zero-point and color transformation calibration to standard R band

is thus difficult. However, the effective wavelength of the filter is quite close to that of the

standard R band with a slightly wider wavelength coverage. The fitting results shows that

the deviation is 0.007 between the TAOS magnitude and R magnitude in Henden (2007).

4. Results

Figure 2 shows the optical lightcurves of GRB071010B taken by the three TAOS tele-

scopes during 60 to 230 s after the burst. Contrary to the optical afterglows previously

reported, there is no significant flux decay during this period. Instead, our data from

three telescopes showed consistently a mild increase in flux, with a best-fit power-law in-

dex α = 0.10 ± 0.07 (χ2/ν= 1.15 for ν = 26), defined by F (t) ∝ tα, where F is the flux at

time t after the burst.

Following this mild brightening, GRB071010B appeared to show a shallow decay (α ∼

−0.48) during 1020 to 21,600 s after the burst (Templeton et al. 2007). To combine our TAOS

measurements with GCN reports covering up to 2 days after the burst (Oksanen 2007; Kann

et al. 2007b; Kocevski et al. 2007; Im et al. 2007b; Klunko et al. 2007; Antonyuk et al. 2007),

we recalibrated all the data using the reference stars in Henden (2007) in the GRB071010B
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field. The data of Oksanen (2007) and Im et al. (2007b) were calibrated by USNO B1.0

stars with red magnitude; the USNO B1.0 values are on average 0.09 mag fainter than those

reported by Henden. The reference star (RA= 10h02m09s.93, Decl= +45◦41′41.1′′) reported

by Kann et al. (2007b), Klunko et al. (2007) and Antonyuk et al. (2007) is 0.227 mag

fainter than that given by Henden. The entire, rescaled lightcurve, covering from 1 min to

almost 2 days after the burst, was then fitted with a broken power-law function, F (ν, t) =

F ∗

ν /[(t/tb)
−α1 + (t/tb)

−α2 ], where tb is the break time, α1 and α2 are the power-law indices

before and after tb, and F ∗

ν is the flux at tb (Beuermann et al. 1999). Figure 3 shows the

TAOS and re-calibrated measurements, together with the best-fit broken power-law function.

It is seen that the lightcurve has an initially rising phase (α1 =0.62 ± 0.34) followed by a

decay (α2 = −0.51±0.01) after the break time tb = 137.0±19.0 sec (χ2/ν= 0.98 for ν = 31).

For clearance, the best broken power-law fit is also shown in Figure 2 with TAOS data only.

5. Discussion — Prompt optical emission versus early afterglow

The TAOS lightcurve was compared with the γ-ray observations for possible temporal

correlation. The preliminary high-level BAT data (15–350 keV), downloaded from the Swift

Data Center (SDC)11 were binned to 5 s in order to compare with the TAOS-B 5 s dataset

(Figure 4). The optical and γ-ray lightcurves appear quantitatively similar. In particular

the optical brightening during 80–140 s after the burst seems to correspond to the weak,

third peak at 95 s in the BAT lightcurve reported by Markwardt et al. (2007). The γ-ray

signal was, however, already too weak in this time interval for the optical emission to be the

counterpart of the prompt γ-ray emission.

The early optical emission of GRB071010B, with a brightening followed by a shallow

decay, is unusual. The initial deceleration of the fireball by the reverse shock would produce

a bright peak, such as observed in the well known GRB990123, which exhibited a sharp

brightening of ∼ 3 mag within 25 s, until 50 s after the burst (Akerlof et al. 1999). The

reverse shock is short-lived and subsequent cooling results in a fast decay, e.g., α2 ∼ −2.5

for GRB990123 (Akerlof et al. 1999). In comparison, GRB071010B, as described above,

brightened only mildly, 0.6 mag in 80 s, and had a later break time (tb ∼ 140 s) plus a much

shallower decay (α2 ∼ −0.51). The reverse shock therefore should not be responsible for the

optical emission that we detected.

Electrons accelerated in the shock emit synchrotron radiation. As the fireball slows

down, the synchrotron peak frequency moves progressively to a lower frequency. The optical

11http://heasarc.gsfc.nasa.gov/docs/swift/sdc/data products.html
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weak brightening that we detected could arise when the synchrotron peak frequency passed

through the optical wavelengths. The optical lightcurve of the forward shock emission is

expected to show an initial rising (t0.5), followed by a normal decay t3(1−p)/4, where p is the

power-law index of the electron spectrum with p > 2 (e.g. GRB041006, Urata et al. 2007).

The optical lightcurve of GRB071010B has a rising rate (α1 = 0.62 ± 0.34) consistent with

what is expected from the forward shock mechanism.

On the other hand, considering the case of νm < νopt < νc, the decay phase of the

lightcurve (α2 = −0.51 ± 0.01) would give p = 1.68 for the uniform ISM case and p = 1.01

for the preburst wind case in the standard afterglow model. These values are smaller than

the expected value (p > 2). Moreover, if we consider the afterglow with a flat spectrum

electron distribution (1 < p < 2), the obtained value p = 0.74 for the unifrom ISM case and

p = −3.92 for the preburst wind case are also inconsistent with the theoretical value (Dai

& Cheng 2001). The decay phase in GRB071010B therefore cannot be well explained by

the standard afterglow model. Without spectral or other multi-band measurements in the

early phase of GRB071010B, it is not possible to verify if the brightening was indeed caused

by the synchrotron peak frequency, but even if it was, an additional mechanism is probably

needed to account for the shallow decay after the brightening.

GRB071010B was detected to have a jet break (Kann et al. 2007c; Im et al. 2007c;

Urata et al. 2008), suggesting a viewing angle nearly along the jet axis. This excludes the

possibility that a tail of prompt emission combined with an afterglow could produce a shallow

decay when observing outside the edge of the jet (Eichler & Granot 2006) in GRB071010B.

The standard GRB afterglow model assumes an initially steady energy. The GRB is

produced by the “internal shocks”, i.e., a series of collisions between shells moving at different

velocities. The energy hence changes when the slow material starts to be left behind. As

the initially high-speed material is slowed down by the surrounding environment, the slower

material eventually catches up and produces refreshed shocks. Significant continuous energy

injection is possible and influences the fireball during the deceleration phase. The forward

shocks will be refreshed and decelerate slower than in the standard scenario. This would

change the decay slope of the lightcurve from the canonical one to a shallower one, as is

evidenced in GRB071010B.

Energy injection is expected if the energy distribution over the fireball surface is not

uniform. The two-component jet and the patchy jet model have been proposed to explain

the non-uniformity. The two-component jet model requires one component to be ultra-

relativistic to power the GRB, whereas the other component is a moderately relativistic

cocoon (Meśzaŕos & Rees 1993; Berger et al. 2003; Zhang et al. 2004; Huang et al. 2004;

Granot 2005). The afterglow of the cocoon contains more energy than the narrow component,
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thereby producing a noticeable “bump” in the lightcurve, instead of just changing the rate

of the flux decay, but such a bump should be visible only after 104 s after the burst (e.g.

GRB030329, Huang, Cheng & Gao 2006). It is obvious that the two-component jet model

cannot explain the GRB071010B lightcurve.

Alternatively, the lightcurve of GRB071010B can be explained by the patchy jet model

(Kumar & Piran 2000), which assumes the initial fireball ejecta to have large energy fluctu-

ations in angular direction. This results in jets with distributed values of the Lorentz factor

(Γ), so observers along different viewing angles would receive different fluxes. Furthermore,

with diversified values of 1/Γ, emission from different patches becomes observable at different

time, thus rendering a shallow afterglow lightcurve as detected in GRB071010B.

In summary, the prompt optical emission for GRB071010B was detected within 1 min

after the burst. No significant correlation with the prompt γ-ray emission was found. Our

data of the first 3 min combined with measurements made by other groups within 2 days

after the burst show the temporal evolution of GRB071010B to consist of a slight brightening

followed by a shallow decay. It is likely that the synchrotron peak frequency passed through

the optical wavelengths and caused the early brightening, whereas the continuous injection by

patchy jets was responsible for the slow decay that followed. The detection of GRB071010B

demonstrates the potential of the TAOS system to respond efficiently to a GRB alert to

detect both prompt optical emission and early afterglow.
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Table 1: Log of GRB071010B Optical Afterglow Observations

tstart tend Exposure (s) Mag Telescope

60.28 65.28 5 16.88 ± 0.15 TAOS-B

64.87 145.19 1 s × 20 16.64 ± 0.19 TAOS-A

68.48 73.48 5 16.84 ± 0.19 TAOS-B

76.78 81.78 5 17.01 ± 0.19 TAOS-B

80.38 105.38 25 16.66 ± 0.05 TAOS-D

84.98 89.98 5 16.95 ± 0.19 TAOS-B

93.28 98.28 5 16.74 ± 0.15 TAOS-B

101.59 106.59 5 16.70 ± 0.14 TAOS-B

108.59 133.59 25 16.59 ± 0.06 TAOS-D

109.79 114.79 5 16.63 ± 0.13 TAOS-B

118.09 123.09 5 16.60 ± 0.13 TAOS-B

126.29 131.29 5 16.42 ± 0.12 TAOS-B

134.49 139.49 5 16.41 ± 0.11 TAOS-B

136.90 161.90 25 16.52 ± 0.06 TAOS-D

142.80 147.80 5 16.51 ± 0.09 TAOS-B

149.49 226.41 1 s × 19 16.55 ± 0.18 TAOS-A

151.10 156.10 5 16.67 ± 0.12 TAOS-B

159.30 164.30 5 16.53 ± 0.12 TAOS-B

165.20 190.20 25 16.68 ± 0.07 TAOS-D

167.50 172.50 5 16.50 ± 0.12 TAOS-B

175.80 180.80 5 16.86 ± 0.20 TAOS-B

184.00 189.00 5 16.59 ± 0.14 TAOS-B

192.20 197.20 5 16.48 ± 0.13 TAOS-B

193.51 218.51 25 16.68 ± 0.08 TAOS-D

200.41 205.41 5 16.67 ± 0.14 TAOS-B

208.61 213.61 5 16.65 ± 0.12 TAOS-B

216.91 221.91 5 16.88 ± 0.17 TAOS-B

225.11 230.11 5 16.57 ± 0.15 TAOS-B



– 12 –

Fig. 1.— One of the TAOS afterglow images taken with TAOS-B telescope at 60 s after the

burst of GRB071010B. The integration time was 5 s.
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Fig. 2.— The early optical lightcurves of GRB071010B taken with TAOS-A (squares, stacked

images), TAOS-B (circles), and TAOS-D (asterisks). The linear least-squared fit (dot line)

to all TAOS data shows a mild increase of flux. The dashed line is the best broken power-law

fit with other measurements as shown in Figure 3.
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Fig. 3.— The optical lightcurve of GRB071010B. The dashed line indicates the best fit

by the broken power-law function to the TAOS observations in the first three minutes (this

work) and data from the literature up to two days after the burst (Oksanen 2007; Kann et

al. 2007b; Kocevski et al. 2007; Im et al. 2007b; Klunko et al. 2007; Antonyuk et al. 2007)

.
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Fig. 4.— The Swift 15–350 keV BAT lightcurve (5 s binning) and the TAOS-B lightcurve

(5-s sampling). The inserted arrow denotes the weak third peak of BAT data.


